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Abstract. We propose an approach to solving Bayesian inverse problems
when the number of evaluations of the forward map is restricted due to compu-

tational cost. The proposed introduces a generative model for the distribution
of input-output pairs, learned from a fixed budget of evaluations of the forward

map. This gives rise to an efficient surrogate model of the posterior distribution

which can used within a gradient-based sampling scheme to obtain approxi-
mate posterior samples. We focus on the scenario where the forward map is

function-valued, e.g. the solution of a partial differential equation. In this set-

ting, we adapt a variational autoencoder as the generative prior model, trained
on a basis decomposition of the functional output. This approach dramatically

reduces the cost of the inference process, enabling efficient sampling as well as

upstream activities such as experimental design. We demonstrate the efficacy
of this approach on a number of benchmark problems.

1. Introduction.

1. Inverse problems
2. Surrogates and Generative modelling of the prior
3. Basis decompsition approach.

In applications we are often faced with the problem of wanting to identify initial
conditions, boundary values or other free parameters within a differential equation
(ordinary, partial or otherwise) based on measurements of the solution. Such inverse
problems have motivated a wide array of

Inverse problems arising from differential equations (ordinary, partial or oth-
erwise) are a challenging class of Partial differential equations (PDEs) provide a
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versatile and expressive framework for modelling complex phenomena in physics,
engineering and even social sciences. In

Such equations represent changes in system outputs by relating the output of the
process to its derivatives. A particular realisation of the PDE is typically associated
with a specific set of boundary conditions and a set of values of any free parameters
entering the PDE. In the present contribution we address a class of inverse problems,
where based on sparse and noisy observations of the PDE solution we want to infer
either the parameters of the PDE model, such as boundary conditions or free pa-
rameters, or indeed the solution itself. Such inverse problems are highly important
in engineering and scientific applications which combine theoretic descriptions with
observations. The ubiquity and complexity of inverse problems for PDEs, places
inference at the cornerstone of modern machine learning and the emerging fields of
data-centric engineering, digital twins and physical surrogate models [Refs].

The relationship between the observed data and a set of parameters in the under-
lying PDE model can be arbitrarily complex. One way to learn complex non-linear
relationships is to use deep neural networks (NN), which are very flexible and effi-
cient in representing non-linear dependencies in high-dimensional spaces. Various
NN models have seen high popularity in a number of machine learning applications
[8]. However, many state of the art NN approaches often lack guarantees of conver-
gence and error estimates, as well as requiring high volumes of training data and
oftentimes suffering from interpretability issues [16].

In PDE inference, the underlying physical or engineering systems are often com-
plex, making large quantities of observation data expensive to obtain. At the same
time, available observation data is often corrupted by noise or incomplete. This
places a requirement on the inference methodology to adequately propagate un-
certainty from observations to the predicted model parameters [17]. Generative
adversarial networks (GAN), offer a generative model, which is highly successful in
image processing problems. GANs may be adapted to PDE inference by using the
PDE as a regularisation constraint, and promising to enable uncertainty quantifi-
cation [16, 15]. However, GAN training involves a minimax problem, and thus may
suffer from mode collapse [8]. If this technical difficulty is overcome, GANs typically
provide a generative model with high subjective quality of synthetic samples, but
still do not allow to explicitly compute the likelihood functions, which limits their
usability for inverse PDE problems [7].

Bayesian approaches treat PDE parameters as random variables (RVs) and aim
to model their posterior distributions, conditioned on the observations. Bayesian
models are naturally equipped with uncertainty quantification, are usually humanly
interpretable, and allow one to incorporate prior knowledge about the parameters
into the algorithms [4, 6]. However, classical Bayesian inference involves poste-
rior sampling, which is usually done with expensive Markov Chain Monte-Carlo
(MCMC) algorithms. Full posterior sampling in PDE inverse problems requires
one to solve the actual PDE on every MCMC step to obtain the forward map of
the sampler, which may be prohibitively costly.

A number of ideas have been put forward to reduce the computational load, in-
cluding manifold sampling [5], probabilistic numerical algorithms for PDE likelihood
estimation [9], Gaussian processs (GP) approximations for the joint likelihood over
the solution and its derivatives [3], linearising the variational form of the PDE [6],
and combining linearised variational form with a generative model [13]. However, in
cases when the PDE solutions are obtained using a black-box solver whose internal
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workings are not directly accessible by the inference algorithm, the likelihood and
its derivatives may not be computationally tractable at all.

In general, intractable likelihoods in Bayesian inference can be tackled by Ap-
proximate Bayesian Computation (ABC) [2]. Using ABC for PDE inference would
require generating parameter samples from the prior, solving the PDE and then
rejecting parameter samples which lead to solutions far from the observation data
in an appropriate metric. Clearly, although ABC in principle allows to handle in-
ference, the computational costs would admittedly be very high. Another general
approach to intractable likelihoods is to use Bayesian Synthetic Likelihood (BSL)
[12], which constructs a tractable parametric auxiliary model. However, the validity
of BSL must be verified in each specific case by, e.g. establishing the existence of a
central limit theorem.

In the present work we propose a new computationally inexpensive method for
approximating the Bayesian posteriors of inverse PDE problems. Our main idea is
to remove the computational complexity of solving the forward map, given by the
PDE, during sampling. The forward map still has to be solved, just not during
posterior sampling. Before even embarking on solving the inference problem, we
train a surrogate generative model using a VAE. This surrogate model is capable
of generating the solutions to PDE very cheaply, as well as giving us access to
approximate probability density of the solutions. In other words, VAE acts as a
prior, where the prior information are M PDE solutions, which we have obtained
before seeing any inference data.

The idea of training a surrogate generative model to act as inference prior is quite
appealing. We can view the PDE as defining a manifold of functions {u(x) : RD →
R}, where u(x) is a PDE solution corresponding to some chosen initial or boundary
conditions, constraints or any other PDE parameters. Often PDE solutions can be
well approximated by expansions on dense vector spaces (e.g., Sobolev or Fourier
spaces):

u(x) =

∞∑
n=0

cnϕn(x) ≈
K∑

n=0

cnϕn(x) = uw(x), (1)

where w = [c1 . . . cK ] identifies the approximate PDE solution on the appropriate
vector space. The above expression allows us to interpret inference of PDE solu-
tions as regression to a functional space with a well-defined basis or frame. The
functional prior on admissible uw(x) can then be approximated by a distribution
over w: w ∼ pθ(w), where θ denotes the parameters of a suitable distribution fam-
ily. Furthermore, we can set up highly expressive variational approximations to
the prior using Variational Autoencoders (VAEs) [10], which treat w ∼ pθ(w) as a
marginal of a latent variable model:

pθ(w) =

∫
pθ(w, z)dz. (2)

The functional prior in (1) and (2) can be appropriately combined with problem-
specific likelihoods and priors on other unknown PDE parameters to obtain a
Bayesian hierarchical model for inference. We emphasize that our approach does
not impose any requirements on the PDE solver, treating it as a black box. This is
essential in many engineering applications, which typically involve the use of compli-
cated PDE solvers. Moreover, using the VAE as a surrogate functional prior allows
us to cheaply draw functions uw(x) form the PDE prior, thus eliminating the need
to solve the forward map on every step of the MCMC sampler, which is currently
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the strongest computational bottleneck to many inference problems. Furthermore,
since VAE yields pθ(w) as a tractable and differentiable density we can use highly
efficient gradient-based MCMC samplers, reducing the computational cost of solv-
ing the inverse problem even further. Our main contributions are summarised in
the following list:

• We propose a straightforwardly implementable framework, in which to approx-
imately solve Bayesian inference problems for expensive forward problems;

• Proposed framework is able to approximate appropriate functional priors from
black-box simulators, providing an efficient alterntive to approximate Bayesian
computation. Note that the black-box simulator does not have to be linear;

• The VAE approximation to the probability measure provides direct access to
the density, whose gradient can be computed and readily used in any MCMC
simulation to solve the Bayesian inference problem;

• We demonstrate the methodology on a number of PDE examples, including a
Bayesian experimental design problem for optimal sensor placement.

2. Approximate probability measure on function spaces. In order to train
the functional prior, we need an ensemble of N PDE solutions. Approximating the
solutions following (1), we obtain N iid samples {wi}Ni=1 in a K-dimensional vector
space. We seek to obtain a variational approximation pθ(w) to the distribution of
these N samples. Very expressive distribution families can be obtained by taking a
known family, e.g., Gaussian, and treating its parameters as non-linear functions of
a latent random variable z ∈ Rd. When the non-linear function is expressed with a
neural network (NN), one obtains a VAE [11].

As mentioned above, we work within a variational framework, where we approx-
imate a distribution over w by introducing a latent variable z and marginalising
the joint pθ(w, z) in (2). To set up a VAE, we first need to choose two parametric
distribution families pθ(x) and qϕ(x), which are coupled via the variational lower
bound. Next, we need to set up two NNs, an encoder e(x) and a decoder d(x), with
respective parameters ηe and ηd, so that by setting

ϕ = eηe
(w), (3)

θ = dηd
(z),

we turn the densities pθ(w) and qϕ(z) into respective conditional densities, pθ(w | z)
and qϕ(z | w). Finally, we place a prior on the latent variable z and obtain the
following hierarchical generative model:

z ∼ p(z),

w ∼ pθ(w | z). (4)

The training of the VAE (4) consists of optimising the NN parameters in (3) by
maximising the following variational lower bound:

L(ηd, ηe) =
N∑
i=1

Eqϕ(z|wi) [log pθ(wi | z)]−KL [qϕ(z | wi) || p(z)] , (5)

where the last term is the KL-divergence between the latent posterior qϕ(z | xi) and
latent prior. In practice the sum over wi in (5) is replaced with mini-batch average.
The maximisation of (5) is similar in spirit to the expectation-maximisation algo-
rithm. However, do to the complicated nature of dependencies in (3), (5) is usually
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maximised via a doubly-stochastic gradient ascent. We note that in practice max-
imising (5) requires extra care in estimating the gradient of the first term, which is
prone to have high variance. The two most popular approaches to maximising (5)
are reinforce algorithm and reparametrisation trick [11].

Examples which follow have the same VAE architecture for approximating the
distribution of w in (1). We used a full-rank Gaussian as pθ(x), a diagonal Gaussian
as qϕ(x), a spherical Gaussian as latent prior p(z), and two multilayer perceptrons
as encoder and decoder NNs:

p(z) = N (0, Id), (6)

pθ(w | z) = N (µz,Σz),

qϕ(z | w) = N (µw, σ2
wI),[

µw, σ2
w

]
= eηe(w),

[µz,Σz] = dηd
(z).

Depending on the problem, we varied the number of hidden layers and the dimen-
sionality of the latent z.

We note that depending on the inference problem, the VAE can encode additional
information. For example, if the target of inference are boundary conditions or PDE
parameters, those can be appended to w. If we wish to infer a term in the PDE,
we can expand it using (1), and append those coefficients to the expansion of the
PDE solutions when training the VAE.

3. Approximate Bayesian inference. A typical inference problem for PDEs
is reconstructing the full solution to the PDE from its sparse noisy observations.
Usually the class of the noise distribution is known or assumed. We will assume
noise to be uncorrelated Gaussian with mean zero and some unknown variance σ2.
Thus for the PDE with D-dimensional support, inference training set D is given by

D = {(xi, yi)}ndata
i=1 , (7)

yi = u(xi) + εi, ε ∼ N (0, σ2),

where y = [y1 . . . yndata
]T ∈ Rndata are the targets and X = [x1 . . .xndata

] ∈
RD×ndata is the design matrix, which contains the points in the PDE support at
which the noisy solution is observed.

We may be looking to infer the noise variance σ2 and solution u(x), which are
consistent with the training data (7). Alternatively, we may be after the initial
or boundary conditions of the PDE or indeed after any constraint, parameter or
term in the PDE. Following the Bayesian paradigm, we treat any such quantities
of interest as random variables, and look to approximate their distributions. These
should be consistent with the training data (7). The noise assumption (7) together
with the model PDE give rise to the following likelihood:

p(y | X,σ2) = N
(
yi | u(xi), σ

2Indata

)
, (8)

where ui(x) is the PDE solution that we may be looking to infer. As discussed, we
assume a dense vector space to be associated with the PDE and use an approximate
likelihood, replacing u(x) with a K-term expansion (1):

p(y | X,σ2) ≈ N
(
yi | uw(xi), σ

2Indata

)
. (9)
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Algorithm 1 Posterior with VAE prior

{ui(x)}Ni=1 ← N numerical PDE solutions, obtained using any black-box solver
D ← inference training data (7)
for i = 1 to N do

wi ← truncated expansion (1) of ui(x)
if inference targets PDE parameters/constraints then

append these parameters/constraints to wi

end if
end for
ηd ← decoder parameters of VAE (6), trained on {wi}Ni=1

return p(w, z, ξ | D, ηd)← posterior (11)

Using Bayes’ theorem, we can find the posterior on the K-dimensional vector of
expansion coefficients w:

p(w, σ2 | y, X) ∝ N
(
yi | uw(xi), σ

2Indata

)
p(w)p(σ2), (10)

where an approximate VAE prior p(w) ≈ pθ(w) defined by (2) and (6) encodes a
manifold of PDE solutions obtained independently from inference training set D in
(7), and we also assume a sensible prior p(σ2) on the observation noise.

The posterior (10) is written in the form, where a marginal is taken over the
latent variable z. Since we intend to sample from the posterior using HMC, we
should include z into the sample and marginalise while sampling. This leads to the
final expression for the posterior, which uses VAE in (6) as prior:

p(w, z, ξ | D,dηd
) ∝ (11)

N (yi | uw(xi), softplus(ξ)Indata
)N (w | µz,Σz)N (z | 0, Id)N (ξ | 0, 1),

[µz,Σz] = dηd
(z),

where we made a transformation σ2 = softplus(ξ) with softplus(x) = log (1 + ex).
As mentioned above, the vectorw, which contains the basis expansion of the PDE

solution, may be appended with any PDE parameters or expansions of terms in the
PDE during the VAE training and inference. The general algorithm for obtaining
the posterior is given in algorithm (1). After the posterior (11) is obtained, one
can sample from it using HMC, while marginalising over z and those elements of w
which are not the targets of inference.

4. Numerical Experiments. In the present section we demonstrate the inference
method on several examples. We emphasise that PDE solutions are only required
to train the VAE. Moreover, these can be obtained using any black-box PDE solver.
Once trained, the VAE can be re-used for inference, leading to high potential savings
in computational cost.

4.1. Boundary value problem in 1D. Consider the following example of a
boundary value problem (BVP) on x ∈ [−L/2, L/2], where L = 2 [16]:

uxx − u2ux = f(x), (12)

f(x) = −π2 sin (πx)− π cos (πx) sin2 (πx),

u(−1) = a, u(1) = b,
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Figure 1. Encoding solutions to PDE (12). Grey: 100 of 104

solutions to (12), computed at left/right BC, distributed nor-
mally/uniformly – as shown by histograms on the sides. Blue:
3 of 104 VAE-generated BC-solution pairs, with histograms of all
104 BC on the sides. Red: 3 numerical solutions, obtained at the
same BC as the 3 generated solutions shown.

where the boundary conditions (BC) are RVs:

a ∼ N (−3, 1), (13)

b ∼ U([0, 1]).

We can set up a pedagogical inference problem by noting that when a ≡ ae = 0
and b ≡ be = 0, the BVP (12) has an exact solution ue(x) = sin (πx). The inference
problem we will solve is to reconstruct the BC (a = b = 0) from sparse noisy
observations of the solution ue(x). The inference training data is given by ndata = 10
noisy observations at random locations xi:

D = {(xi, ue(xi) + εi}ndata
i=1 , (14)

ue(x) = sin (πx),

xi ∈ U([−1, 1]),
εi ∼ N (0, 0.12).

We can obtain the expansion (1) for a solution u(x) by combining half-Fourier
series with a linear function:

u(x) = u0(x) + uBC(x), (15)

u0(x) =

∞∑
n=1

cn sin
nπx

L
,

uBC(x) =
b− a

L
x+

a+ b

2
,
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Figure 2. Bayesian inference of BC in BVP (12). Left pane: Grey:
100 of 104 posterior HMC samples. Blue: MAP estimator of solu-
tion ue(x). Red: exact solution ue(x). Markers: inference training
data. Right pane: histograms of HMC samples of BC.

where the expansion coefficients are given by the Discrete Fourier Transform (DFT):

c(i)n =
1

L

L/2∫
−L/2

(u(i)(x)− u
(i)
BC(x))dx. (16)

An approximate prior for the inference problem is obtained by first solving the
BVP (12) N times, with different BCs a and b, sampled from (13). This gives a
prior set of solutions {ui(x)}Ni=1. This prior set is then approximated by computing
the expansion (15) for each ui(x), truncated at the M -th Fourier term. This gives

rise to the VAE training set {wi}Ni=0, where wi = [a(i), b(i), c
(i)
1 , . . . c

(i)
M ]T ∈ RM+2.

In figure 1 we illustrate that the VAE is capable of encoding the BVP (12) with
BC distributed according to (13). We trained the VAE on a sample of 104 solutions,
truncating (15) at M = 10 terms. The central pane of figure 1 shows a subset of
100 solutions in grey, and the side panes show the histograms of BC, also in grey.
To assess the quality of VAE encoding, we generated a sample of the 104 solutions
from the VAE. The histograms of the BC of the generated curves are superimposed
in blue on the side panes of figure 1 and demonstrate that the BC distributions
have been properly captured by the VAE encoding. Additionally, on the central
pane we plot 3 generated solutions in blue, alongside numerical solutions, obtained
at the same BC in red. One can see that visually VAE indeed provides a good
representation of the manifold of solutions to the BVP problem (12) with BC given
by (13). The computational saving offered by replacing numerical solution of the
BVP with generation from the VAE is illustrated by the fact that it took about
20 minutes to computing 104 solutions to the PDE (12) on a standard desktop,
while drawing the same number of samples from the trained VAE takes less than 1
second.

The inference results are summarised in figure 2, which shows a sample from
the posterior (grey), along with a Maximal a-Posteriori (MAP) estimator of the
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Algorithm 2 Posterior update algorithm

{w(0)
i }Ni=1 ← initial sample of VAE training data

{Di}Pi=0 ← mini-batches of inference training data
for k = 1 to P do

η
(k)
d ← decoder parameters of VAE (6), trained on {w(k−1)

i }Ni=1

p(k)(w, z, ξ | Dk, η
(k)
d )← posterior (11)

{w(k)
i }Ni=1 ← N -sample from the marginal of p(k)(w, z, ξ | Dk, η

(k)
d )

end for
return {w(P )

i }Ni=1

solution and a posterior average. The posterior sample of the boundary conditions
is represented by the two histograms on the right. We can observe a very good
agreement between posterior average and the ground truth, both in terms of the
solution ue(x) and in terms of the boundary conditions. We note that increasing
the amount of observation data leads to posterior contraction, as expected.

4.1.1. Iterative posterior updates. In cases when prior information is poor or the
prior does not adequately capture the inference ground truth, but we do have suf-
ficient inference training data, we can the inference data to improve the quality
of the VAE through iterative re-training. Of-course, doing so will incur additional
computational costs of training several VAEs.

As an example, consider again the problem of inferring the BC of ue(x) in (14),
but this time assume that the prior distributions of left- and right-BC are no longer
given by (13), but instead are off of the ground truth:

a ∼ N (−2, 1), (17)

b ∼ N (2, 1),

The prior given by (17) is poor, because the true BC (ae = be = 0) lie in its tails.
Using such prior for inference will lead to high variance and errors in predictions. In
order to retrain the VAE, we sub-sample a mini-batch from the available inference
training data, and draw a sample from the predictive posterior (11), trained only
on the mini-batch data (i.e., ndata in (11) is equal to the mini-batch size). We then
use the predictive posterior sample to train a new VAE, which will have improved
representation of the ground truth. Algorithm 2 expresses P such updates.

The algorithm 2 is also illustrated in figure 3 for our inference problem with
mini-batches of size 2. Top left panel shows a draw from the predictive posterior
with initial VAE and a mini-batch of size 2 (grey). The MAP estimator is shown
in blue, and has poor agreement with the ground truth (red). We plot the data
mini-batch with crosses. The draw from this predictive posterior was used to train
a new VAE, which in turn was used to obtain a predictive posterior with the second
mini-batch of training data. We performed a total of 5 updates, exhausting the
available inference training data. The final posterior is shown in the top right panel
of figure 3 and captures the ground truth quite well. The bottom panel of figure
3 shows histograms of posterior samples for BC, for each of the VAE updates. We
observe a contraction of these histograms towards the distribution, centred around
the true BC.
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Figure 3. Updating VAE during inference. The legend of top left
and -right panes is the same as in figure 2 Top left: inference on
two data points with a bad initial prior. Top right: inference on
ten points after consecutive VAE updates. Bottom: contracting
predictive posterior of BC during VAE updates.

4.2. Diffusion in 2D. We may be interested in learning some unknown functional
term in a PDE from the sparse observations of its solution. In principle, we can
approximate the term in question with an expansion in an appropriate basis or frame
and cast the problem as inference of the expansion coefficients. As an example,
consider inference of the diffusion coefficient in the following Poisson equation on a
unit square x = [x, y]T ∈ Ω = [0, 1]× [0, 1]:

−∇ · (κ(x, y)∇u(x, y)) = f, (18)

where we assume a Dirichlet BC u|∂Ω = 0. For simplicity we keep the source
term constant, f = Const. The diffusion coefficient κ(x, y) must be non-negative,
bounded and with a bounded derivative. To satisfy this requirement, we can set
κ(x, y) = exp c(x, y), where c(x, y) ∈ C1(Ω), which is significantly less restrictive.
Equation (18) can be solved with a finite element spatial discretisation scheme in
combination with a Krylov linear solver [1].

Admissible functions c(x, y) may be generated, e.g., from the following Gaussian
process with a zero mean and a squared exponential kernel function:

κ(x, y) = exp c(x, y), (19)

c(x) ∼ GP (0,K(x1,x2)) ,

K(x1,x2) = a exp (x1 − x2)
2
/ξ

We have calibrated the kernel parameters a = 2.0 and ξ = 0.25 and the source term
f = 50.0, to achieve visually interesting droplet-shaped solutions u(x, y). Different
realisations of c(x, y) from (19) lead to different diffuse drops inside the domain Ω.
An example is given by the top two rows of panes in figure 4.
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Figure 4. VAE approximation of the joint distribution over c(x, y)
and u(x, y) in (18)–(20). Top two rows: κ(x, y), generated from
VAE (left pane), jointly generated solution u(x, y) (middle pane)
and true numerical solution (right pane). Bottom row: t-SNE re-
duction of 104 generated (red) and 104 true (black) solutions u(x, y)
(left pane); same for κ(x, y) (middle pane); histogram of L2-norms
between generated and true solutions, computed in real space.

Assuming that we have sparse noisy observations ui, i = 1 . . . N , of a given
solution u(x, y) at N discrete points inside the domain Ω, we aim to reconstruct
the log-coefficient function c(x, y), which gave rise to the observed solution. We
represent u(x, y) and c(x, y) by their respective DFTs. To satisfy the Dirichlet
boundary conditions on u(x, y), we expand it in sin-series:

u(x, y) =

(
Mu∑
n=1

an sin (nπx)

)
×

(
Mu∑
n=1

bn sin (nπx)

)
, (20)

c(x, y) =

(
Mκ∑
n=0

an cos (nπx)

)
×

(
Mκ∑
n=0

bn cos (nπy)

)
.

The VAE, which represents the joint distribution over c(x, y) and u(x, y), can
be trained on the DFTs of a large number of realisations of c(x, y), drawn from
(19), and the corresponding DFTs of u(x, y), obtained by numerically solving (18).
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Figure 5. Inference of the solution u(x, y) and the diffusion co-
efficient κ(x) in PDE (18). Red markers show 64 points used
for inference. Different panes show posterior averages over 103

posterior samples. The relative L2(Ω)-norm errors are ∥utruth −
u∥/∥utruth∥ = 0.02 and ∥ctruth − c∥/∥ctruth∥ = 0.07

Figure 4 shows several generated solutions from a VAE, which was trained on 104

DFT expansions of pairs c(x, y) and u(x, y), expanded according to (20) with Mu =
Mκ = 6. The top two rows of panes show two examples of κ(x, y), followed by
the true numerical solutions u(x, y) and its generated counterpart. We see that our
VAE produces u(x, y), which are visually close to the true PDE solutions. A better
quality control of the VAE can be performed by using a clustering algorithm to try
and separate the generated and true data. We used a non-parametric dimensionality
reduction algorithm t-SNE [14] on two concatenated data sets: the VAE training
data and VAE-generated data set of the same size. Our purpose here was to verify
that both data sets are samples from the same manifold. As can be seen from
the first and second panes of the third row, t-SNE fails to separate the generated
κ(x, y) and u(x, y) from the training data. This further attests to the quality of the
trained VAE. Finally, we quantify the error between the generated and true data
by computing a histogram of L2-norms of difference between the true solutions and
those generated from the VAE. This is depicted in the third pane of the bottom
row of figure 4, and shows that the expected error is about 10%. Note that the
error depicted is computed in real space, and is thus influenced by the truncation
of the Fourier series. One can reduce the truncation error by increasing Mκ and
Mu, while the error of VAE can be reduced by training on larger data sets.

To demonstrate inference, we first set up the ground truth by first sampling a ran-
dom κtruth(x, y) from (19) and solving the PDE (18) numerically to find utruth(x, y).
We simulate sparse observation data ui by evaluating utruth(x, y) at N = 64 points
(xi, yi), i = 1 . . . N , generated from a Sobol sequence in 2D, and adding white noise:

ui = u(xi, yi) + 0.001εi, (21)

εi ∼ N (0, 1). (22)
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Figure 6. Inference of the diffusion coefficient and solution from
figure 5 in Fourier space. The DFTs of c(x, y) and u(x, y) defined
in (20) are ordered in terms of increasing frequencies. The MSE
for DFT[κ] is 8.8% and for DFT[u] it is 1.5%.

By MCMC sampling the posterior in equation (11), we obtain the DFT of u(x, y)
and κ(x, y) in equation (20). The results are summarised in figure 5, which shows
the true u(x, y) and κ(x, y), along with posterior averages. Note that the quality
of inference of u(x, y) is higher than that of log κ(x, y), as evidenced by the relative
errors given in the figure caption. This is a manifestation of the low sensitivity
of the solution to the diffusion equation to the diffusion coefficient. The inference
error measured in the real space in terms of the relative L2(Ω)-norms, contains the
approximation error due to truncated Fourier series (20). It is therefore instructive
to consider inference in the Fourier space.

Figure 6 shows the coefficients of expansion of c and u given in (20), ordered
according to the increasing frequency. We note again that DFT[κ] has higher un-
certainty and MSE error than DFT[u], which is due to the sensitivity of the PDE
(18). More interestingly, note that higher frequencies contribute the most to both
uncertainty and error. This is not surprising, because the observation noise affects
higher frequencies the most. Ideally, the cut-off of the Fourier series (20) should be
commensurate with the observation noise.

4.2.1. Design of experiments. An important and interesting question concerns choos-
ing the free parameters of the statistical model to improve the quality of inference.
Such experimental design tasks are usually quite computationally costly, requir-
ing one to solve the forward map multiple times when evaluating likelihoods inside
optimisation loops. Therefore, having access to functional priors with tractable like-
lihood functions, which are cheap to evaluate, can potentially make experimental
design computationally much more accessible.

Assume that we already have K sparse observations of a PDE solution u(x),
which form our existing experimental data D = {(xi, ui)}Ki=1, where ui = u(xi)+ εi
is the noisy observation with an appropriately chosen observation noise model. But
now we also have means to obtain P additional observations of u(x) at P new
points di, i = 1 . . . P of our choosing. The experimental design task is to optimally
choose the coordinates for d = [d1 . . . P ] to maximise the information gain about
the solution. In engineering such tasks may be associated with the placement of P
additional sensors inside a medium, whose physical behaviour is described by the
PDE.

Recall that within our statistical model, the PDE solution is represented by an
expansion on a frame of N features as given in (1) and the observation noise is
assumed to be iid Gaussian with variance σ2. The joint data likelihood is given by
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Figure 7. Left column of panels shows the ground truth for in-
ference and 3 initial measurement points (black symbols). Right
column shows the inference posterior average, where the posterior
was found by placing 10 additional measurement points (red sym-
bols), whose coordinates were obtained by minimising (31).

p(D) =
∏K

i=1 p(ui | xi), with the likelihood of each data point (u,x) given by

p(u | x) = N (u | u(x), σ2), (23)

u(x) =

N∑
n=0

γnϕn(x),

where ϕi are our features. We approximate the joint prior distribution on γ =
[γ1 . . . γN ]T with a VAE. In order to simplify notation, in this section we denote the
posterior on γ due to existing measurements as

p(γ) := p(γ | D). (24)

According to (23), when P new observation sites d = [d1 . . .dP ] are set, the
joint likelihood of the new measurements y = [y1 . . . yP ], where yi = u(di) + εi and
εi ∼ N (0, σ2) is given by

p(y | γ, d) = N (y | u(d), σ2IP ), (25)

u(d) =

[
N∑

n=0

γnϕn(d1), · · ·
N∑

n=0

γnϕn(dP )

]T
where IP is the P -dimensional identity matrix. We shall denote the updated pos-
terior due to P new measurements y taken at sites d by p(γ | y, d).

We can formulate the utility function for d by requiring that it maximise the
expected information gain between p(γ) and p(γ | y, d), which is equivalent to
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maximising the expected KL-divergence:

U(d) = Ep(y|d)DKL[p(γ | y, d) || p(γ)] (26)

=

∫
dγ

∫
dy (log p(γ | y, d)− log p(γ)) p(γ, y | d)

The expectation in (26) is computed over the predictive distribution of the new
(yet unobserved) data p(y | d). Applying Bayes theorem

p(γ | y, d) = p(y | γ, d)p(γ)
p(y | d)

, (27)

we cast the expected information gain in a form amenable to estimation:

U(d) =

∫
dγ

∫
dy (log p(y | γ, d)− log p(y | d)) p(γ, y | d) (28)

= Ep(y,γ|d) log p(y | γ, d)− Ep(y|d) log p(y | d).

Notice that gradient-based maximisation of the utility (28) with respect to d may
suffer from high variance of the gradients because of the need to differentiate through
the density p(y, γ | d), which is used to compute the expectations. Here we get
around this problem by using Bayesian optimisation, which fits an easily differen-
tiable surrogate function to U(d).
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In practice, we can estimate the density of the predictive distribution from the
marginal:

p(y | d) =
∫

dγ p(y, γ | d) ≈ 1

M

M∑
j=1

p(y | γj , d), (29)

where γj ∼ p(γ). This gives rise to the following unbiased utility estimator:

Ũ(d) =
1

K

K∑
i=1

log p(yi | γi, d)−
1

K

K∑
i=1

log

 1

M

M∑
j=1

p(yi | γij , d)

, (30)

where yi ∼ p(y | γi, d), with the density given by (25) and γij ∼ p(γ) for i = 1 . . . N ,
j = 1 . . .M .

When the posterior p(γ) is given in terms of an MCMC sample of size K, as-
suming that the MCMC chains which produced the sample are ergodic, we can use
a biased estimator to significantly reduce the computational cost:

Ũbiased(d) =
1

N

K∑
i=1

log p(yi | γi, d)−
1

K

K∑
i=1

log

 1

K

K∑
j=1

p(yi | γj , d)

, (31)

where γi, i = 1 . . .K is our MCMC sample from the posterior p(γ) in equation (24),
and yi is one sample, drawn from p(y | γi, d).

To illustrate experimental design, consider inference for the PDE in (18) again.
We set the true c(x, y) ≡ log κ(x, y) by the Fourier expansion in (20) with Mκ = 1,
a0 = −b0 = −1.5 and a1 = b1 = 1.0. The true u(x, y) is obtained numerically and
shown together with the true log κ(x, y) in the left row of figure 7. The solution
is sharply peaked, which should make uniform or Sobol inference points a poor
choice. As existing experimental data we choose 3 points, located at (0.1, 0.9),
(0.9, 0.1) and (0.9, 0.9) (black crosses in figure). The locations were deliberately
chosen off of the center of the ”drop” and in the bulk of surrounding ”vapour”.
By maximising the utility function (31), we placed 10 design points. The optimal
placement of these new measurement sites is shown with red symbols in figure 7.
Notice how the algorithm produces nearly uniform grid of design sites, while at the
same time placing several sites exactly at the peak of u(x, y). It is also noticeable
from the figure that a missing ”grid” point in the bottom left leads to inaccuracy
in the inferred u(x, y) inaccuracy.

To get a sense of uncertainty quantification and the efficiency of Bayesian experi-
mental design, it is instructive to look at the MCMC samples of the inferred Fourier
coefficients. These are represented in figure 8, ordered from high to low harmonics.
To benchmark the design sites, we generated the same number of measurement sites
from the Sobol sequence. The Sobol sequence is designed to maximise the distance
between the points in nD, covering the domain approximately uniformly. As can
be seen from the top row of plots, 13 Sobol sites produce adequate inference. Even
though the 3 initial observation sites clearly cannot provide reliable inference (see
middle row of plots), they can nevertheless reliably inform the placement of addi-
tional measurement sites via the information maximisation criterion. The bottom
row of plots shows inference at initial and design points. The result is clearly supe-
rior to Sobol points: the uncertainty is lower, and the posterior means are closer to
the ground truth as evidenced by the following MSEs. For 13 Sobol sites, the MSE
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Figure 9. Left pane: Phase space trajectories of the stochastic
predator-prey model (35). Showing simulations for two different
initial conditions, designated by black circles. Right pane: time-
dependent stochastic trajectories (solid curves) and approximate
DFT representation (36) with M = 10 harmonics (dashed curves)

of DFT[log κ] is 43% and the MSE of DFT[u] is 17%, while for the design sites the
same MSEs are 9% and 6%, respectively.

5. Stochastic dynamical system. Another area of active research, where ap-
proximate VAE-based posterior can be highly beneficial is inference on models with
intractable likelihoods, such as dynamical systems described by stochastic partial
differential equations. The intractability of the likelihoods in such systems stems
from the need to marginalise the transition probabilities over all possible trajectories
of the stochastic system.For illustration, consider an Itô‘ SDE:

dXt = a(Xt)dt+ dWt, (32)

where Wt is a Wiener process and a : R→ R is a non-linear drift. Suppose we have
N sparse observations of a trajectory of such system, {yi = Xti + ξi}Ni=1, where
ξi ∼ N (0, δ2) with some fixed variance δ. The joint density over observations yi
and latent realisations Xti is given by

p(y1, y2 . . . , Xt1 , Xt2 , . . . ) = p(y1 | Xt1)p(y2 | Xt2) . . . p(Xt1 , Xt2 , . . . XtN )

= p(y1 | Xt1) . . . p(XtN | XtN−1
) . . . p(Xt2 | Xt1), (33)

where in the second equality we used the Markov property of the Wiener process.
When δt = ti − ti−1 is small, the densities p(Xti | Xti−1

) may be approximated
using, e.g. an Euler-Maruyama scheme

p(Xti | Xti−1) ≈ N (Xti | Xti−1 + δa(Xti−1), δt), (34)

but such linear approximation breaks at large δt. In general, the conditional den-
sities p(Xti | Xti−1

) are intractable, because they require marginalising over all
possible trajectories between Xti−1 and Xti .However, using a VAE we can directly
approximate the joint probability density p(Xt1 , Xt2 , . . . XtN ) above with a tractable
expression.



18 PETER YATSYSHIN AND ANDREW B. DUNCAN

For a complete example of inference, consider a noisy predator-prey model, which
describes the joint temporal dynamics of two coexisting populations: predator, Xt,
and prey, Yt:

dX1,t = (θ1X1,t − θ2X1,tX2,t)dt+
√
θ1X1,tdW

(1)
t −

√
θ2X1,tX2,tdW

(2)
t ,

dX2,t = −(θ3X2,t − θ2X1,tX2,t)dt−
√

θ3X2,tdW
(3)
t +

√
θ2X1,tX2,tdW

(2)
t , (35)

where θ = [θ1, θ2, θ3] are the model parameters, which we keep fixed at θ =
[5, 0.035, 6]. We also fix the the time horizon to t ∈ [0, 1]. Several sample trajecto-
ries from the system (35) are shown in the left pane of figure 9. We are interested in
the problem of inferring the trajectory of (35), given N sparse noisy observations.

In order to encode the distribution of stochastic trajectories in (35), we first

approximate each trajectory using DFT X̂i(t) ≈ Xi,t:

X̂i(t) =

M∑
n=1

cni sinnπt+ (ai − bi)t+ ai,

ai = Xi,0, bi = Xi,1. (36)

An example of a trajectory and its smooth approximant (36) is shown in the right
pane of figure 9 and demonstrates the smoothing effect that the transformation has.
Still all the important features are captured by representation (36).

Now we can simulate a large dataset of trajectories of (35) and train a VAE to
approximate pθ(w | z), where w = [{cn1}n, a1, b1, {cn2}n, a2, b2]. The marginal den-
sity

∫
pθ(w | z)p(z)dz provides an tractable and differentiable approximation to the

density of the probability measure on the manifold of stochastic trajectories of (35).
We obtained the training data for the VAE by first generating an ensemble of 1000
normally distributed initial conditions, and simulating 100 stochastic trajectories
of (35) per initial condition. This was done using Euler-Maruyama scheme with
a sufficiently small step to ensure numerical stability, which in our case was 10−2.
We then computed the expansion (36) for each simulated trajectory, obtaining the
VAE training data set w = [{cn1}, a1, b1, {cn2}, a2, b2]. As in previous examples, we
verified that the VAE indeed captures the manifold of stochastic trajectories, and
properly encodes the original distribution of initial conditions.

For inference, assume that we have ndata noisy observations of the trajectory at
distinct time stamps {ti}ndata

i=1 , so that our inference training data isD = {(X̃1,ti , X̃2,ti)}
ndata
i=1 ,

where X̃j,ti = Xj,ti + εi for j ∈ {1, 2} and εi ∼ N (0, 1). We can sample the poste-
rior over the approximate trajectories (36), the observation noise ξ and the latent
auxiliary variable z, marginalising over z:

p(w, z, ξ | D) ∝

N
(
X̃1,ti | X̂1,ti , softplus(ξ)Indata

)
N
(
X̃2,ti | X̂2,ti , softplus(ξ)Indata

)
N (w | µz,Σz)N (z | 0, Id)N (ξ | 0, 1), (37)

where µz and Σz are obtained from the decoder in (4).
After training the VAE, as an example, we simulated a stochastic trajectory

and performed inference on it 10. Not only does our approach make inference on
the stochastic dynamical system computationally tractable, but also the process of
drawing posterior samples is very fast due to the fact that we only need to run for-
ward the VAE decoder. We marginalise over the latents during HMC sampling by
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Figure 10. Inference on the trajectory of a stochastic dynamical
system in (35). The true trajectory (red) is inferred from sparse
noisy observations (crosses), using HMC. The posterior samples are
shown in grey, and the MAP estimator in blue. As expected, the
posterior (37) contracts around the true trajectory

simply ignoring them from the sample. Figure 10 demonstrates a contracting pos-
terior during inference. Each panel shows inference, trained on increasing number
of ndata sparse noisy observations from the trajectory. Notice the high uncertainty
about the initial condition. This is to be expected, because the underlying dynamics
of the system is non-deterministic, and a broad set of initial configuration follows
very similar evolution patterns, as reflected by the posterior.

6. Conclusion. We proposed a Bayesian inference scheme, based on a black-box
PDE solver and a VAE. In summary, the proposed method is agnostic to the numer-
ical scheme used for solving the PDE, and produces an efficient and computationally
inexpensive functional prior for Bayesian inference. We considered three examples:
a non-linear boundary value problem in 1D, a linear elliptic PDE in 2D, and a
stochastic differential equation in 2D. In all cases, we chose more or less arbitrarily
such aspects of VAE as NN architectures and dimensionality of the latent space.
When dealing with a specific problem, one can use Bayesian model selection or op-
timisation to optimise such choices. There are also avenues for future investigation,
based on imposing a covariance structure over the latent space, which would be
reflective of the underlying measure on the functional space approximated by the
VAE.

Our proposed method has an accuracy bottleneck, associate with the representa-
tion of the probability distribution over functions in terms of Fourier-series expan-
sion. Alternative methods of encoding functional distributions, such as conditional
neural processes may provide better representation of the PDE solution manifold
in regimes where high amounts of training data are available.
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